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Error Propagation for a UR5 Robotic Manipulator 

530.645 Kinematics Final Project    Can Kocabalkanli 

Abstract 

In this project, two error propagation formulas (from [1]) were recursively implemented in Mathematica 

and were evaluated at different magnitudes of error in the context of the UR5 robot arm. Their accuracies 

were assessed by numerically comparing the propagated error at the end effector resulting from errors 

from each individual joint of the UR5, and comparing these propagations to the actual error observed. 

Introduction  

UR5 Manipulator 

The UR5 is a flexible collaborative robot arm manipulator built by 

Universal Robots. It features six joints that can each rotate through ± 360° 

[2]. It is commonly used for lightweight industrial and commercial 

applications and for educational purposes. Students like myself are 

expected to use the UR5 in some of their robotics classes, which makes 

error propagation for this manipulator a personally relevant and useful 

kinematics application.  

Rigid Body Motions in SE(3)        

The motion of the UR5 is conveyed by the Euclidean motion group SE(3), represented with a 4 x 4 

homogeneous transformation matrix  𝑔 = [
𝑅 𝑡
0𝑇 1

] where R is an SO(3) rotation matrix and t is a 

translation in three dimensions. 

Adjoint Operators in SE(3) (Ad and ad) 

The error propagation formulae explored in this project make use of the adjoint operators. The Adjoint 

Operator Ad(g) for an SE(3) transformation matrix g is Ad(g) = (
𝑅 03

𝑇𝑅 𝑅
) , where T = tM, the matrix 

Figure 1: UR5 Manipulator [2] 
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representation of the translation t. Meanwhile, if we define 𝑋 = log(𝑔) =  (
Ω 𝑣
0𝑇 0

), the adjoint ad(X) for 

X is ad(X) = (
Ω 0
𝑉 Ω

), where V = vM. 

Basis Elements  

Basis elements of the Lie Algebra corresponding to SE(3) are used in the relevant error propagation 

formulae, and therefore are defined here: 

𝐸1 = (

0 0
0 0

   0 0
−1 0

0 1
0 0

   0 0
   0 0

) 𝐸2 = (

    0 0
    0 0

1 0
0 0

−1 0
    0 0

0 0
0 0

)  𝐸3 = (

0 −1
1    0

0 0
0 0

0    0
0    0

0 0
0 0

) 

𝐸4 = (

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

)     𝐸5 = (

0 0
0 0

0 0
0 1

0 0
0 0

0 0
0 0

)     𝐸6 = (

0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0

) 

Forward Kinematics of UR5 

The Denavit-Hartenberg (D-H) convention can be used to attach reference frames to the six links of the 

UR5 and construct the SE(3) transformation matrices from thereon. The reference frames for each link are 

attached as seen in Figure 2. The D-H parameters of these frames are presented under Table 1. 

  

Figure 2: D-H Frames for each link and visualization of the UR5 at this configuration [3] 
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Table 1: D-H Parameters of UR5 [4] 

The parameters are defined as: 

Θi : Angle between Xi-1 and Xi about Zi 

αi : Angle between Zi and Zi+1 about Xi 

di : Distance between Xi-1 and Xi along Zi 

ai : Distance between Zi and Zi+1 along Xi 

 

After setting each reference frame at the joints, a general expression for the transformation matrix 

between each consecutive frame (i-1 and i) can be written. Then, the transformation between the robot’s 

base and any joint i can be written as 𝑇 =𝑖
0 𝑇1

0 𝑇 … 𝑇𝑖
𝑖−1

2
1  (1). This general expression looks like this [3]: 

 

 

  

Error Propagation in Serial Linkages  

Intuitively, if two serial joints independently display error, these two error distributions would 

stack to cause greater error at the end effector of the serial linkage. Given the two error probability 

density functions, the error distribution at the end effector is their convolution [1].  

The mean μ of a sample distribution is defined as (3) [5]: 

𝝁 =
1

𝑁
∑ 𝒙𝑖

𝑁

𝑖=1

 

While the covariance of the distribution about this mean is given by (4) [1]: 

𝛴 =
1

𝑁
∑ 𝑙𝑜𝑔(𝜇−1 ∘ 𝑔𝑒𝑒

𝑖 )𝑙𝑜𝑔(𝜇−1 ∘ 𝑔𝑒𝑒
𝑖 )

𝑇
𝑁

𝑖=1

 

There are two error propagation formulas given by Chirikjian to approximate the propagation of the 

means and covariances of the PDFs of each linkages along the series that result from the first and second 

order expansions of the probability density function using the Baker-Campbell-Hausdorff Formula [1]. 

(2) 

(3) 

(4) 
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The first order propagation formula is defined as (5) [6]:  

Σ1∗2 =  Ad(g2
−1)Σ1∗2𝐴𝑑𝑇(𝑔2

−1) + Σ2 

The second order propagation formula is defined as (6) [6]: 

Σ1∗2 =  𝐴 + 𝐵 + 𝐹(𝐴, 𝐵) 

𝐴 = Ad(g2
−1)Σ1∗2𝐴𝑑𝑇(𝑔2

−1),      𝐵 = Σ2  

𝐹(𝐴, 𝐵) =  
1

4
∑ 𝑎𝑑(𝐸𝑖) 𝐵 𝑎𝑑𝑇(𝐸𝑗)𝐴𝑖𝑗 +

𝑑

𝑖,𝑗=1

1

12
{[ ∑ 𝐴𝑖𝑗"

𝑑

𝑖,𝑗=1

] 𝐵 + 𝐵𝑇 [ ∑ 𝐴𝑖𝑗"

𝑑

𝑖,𝑗=1

]

𝑇

}

+
1

12
{[ ∑ 𝐵𝑖𝑗"

𝑑

𝑖,𝑗=1

] 𝐴 + 𝐴𝑇 [ ∑ 𝐵𝑖𝑗"

𝑑

𝑖,𝑗=1

]

𝑇

} 

𝐴𝑖𝑗" = 𝑎𝑑(𝐸𝑖)𝑎𝑑(𝐸𝑗)𝐴𝑖𝑗 ,     𝐵𝑖𝑗" = 𝑎𝑑(𝐸𝑖)𝑎𝑑(𝐸𝑗)𝐵𝑖𝑗, 

Where Ad(g) and ad(X) are the adjoint operators and Ei are the basis elements described earlier. 

These particular formulae concern the stacking of two links. The formulae can be used recursively for 

manipulators with more links such as the UR5. In the case of the first order formula for instance, the 

covariance for the first three links of the serial manipulator would be Σ1∗2∗3 =  Ad(g3
−1)Σ1∗2𝐴𝑑𝑇(𝑔3

−1) +

 Σ3, and the covariance for the end effector can be recursively calculated as 

 Σ1∗2∗3∗4∗5∗6 =  Ad(g6
−1)Σ1∗2∗3∗4∗5𝐴𝑑𝑇(𝑔6

−1) +  Σ6. The second order formula is used similarly in a 

recursive manner. 

Numerical Error Propagation 

This project aims to evaluate the accuracy of each of these formulae at different distributions of error. The 

kinematic errors are introduced through the joint angles of the UR5; each angle is deviated from its ideal 

value by absolute error values of ±ε, so that each joint angle is sampled at values of θ - ε, θ, θ + ε as done 

in [1].  

Such an introduction of error generated N = 36 frames of references {gi
ee} for the end effector clustered 

around gee, the ideal reference frame that denotes the position and orientation of the end effector relative 

to the manipulator base. 

For the first order theory, since the reference frames {gi
ee} are assumed to be clustered around gee very 

tightly, the mean μee is assumed to be equal to gee. However, this assumption is not precise enough for the 

(5) 

(6) 

(7) 

(8) 

(9) 
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second order approximation theory, and the mean of the reference frames might not be equal to the ideal 

position of the end effector. Therefore, we need to update the mean reference frame μee like this [1]: 

𝜇𝑒𝑒 = 𝑔𝑒𝑒 ∘ 𝑒𝑥𝑝 [
1

𝑁
∑ log (𝑔𝑒𝑒

−1 ∘ 𝑔𝑒𝑒
𝑖 )

𝑁

𝑖=1

] 

To evaluate the accuracy of each error approximation method, for different values of ε the covariance 

matrix Σ for the end effector is calculated using the first order approximation, the second order 

approximation, and by using brute force enumeration that serves as the ground truth that each 

approximation is compared to. Brute force covariance is calculated using equation (4), which is rewritten 

here as [1]: 

𝛴 =
1

𝑁
∑ 𝒙𝒊𝒙𝒊

𝑻

𝑁

𝑖=1

 

Where 𝒙𝒊 = [𝑙𝑜𝑔(𝜇−1 ∘ 𝑔𝑒𝑒
𝑖 )]

𝑣
, v denoting the vector notation of the resulting matrix inside the brackets 

and N = 36 for the end effector and N = 3 for individual joints. 

Each of these methods are implemented in a Mathematica script, where the user specifies the error ε and 

the desired joint angle values. First, the forward kinematics of the UR5 manipulator is numerically 

evaluated between each consecutive joint for the angles of values of θ - ε, θ, θ + ε. Using the forward 

kinematics between individual consecutive joints, a covariance matrix Σ is calculated for each joint using 

Equation (11). Since the distribution is symmetric around the angle θ, the mean for each joint is equal to 

the matrix g evaluated at θ for each joint. 

Then the transformations between the links for each distribution are multiplied with each other as seen in 

Equation (1) to yield the 36 different reference frames for the end effector. The mean and covariance of 

the end effector distribution is calculated using Equation (11) as the ground truth. For the second order 

approximation, the mean is updated once using Equation (10), and the covariance of the end effector is 

recalculated using this mean with Equation (11). On a side note, the updated mean reference frames were 

found to be the same as the old mean reference frames for individual joint angles and hence need not to be 

updated in covariance calculations for the second order approximation. 

Using the individual covariance matrices at each joint previously calculated, Equations (6) and (7) are 

used to evaluate the first and second order approximations respectively. Finally, the script evaluates the 

deviation between the approximations and the actual brute force covariance for the end effector calculated 

using the Frobenuis norm like the following: 

(11) 

(10) 
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𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
‖𝛴𝑎𝑝𝑝𝑟𝑜𝑥 − 𝛴𝑎𝑐𝑡𝑢𝑎𝑙‖

‖𝛴𝑎𝑐𝑡𝑢𝑎𝑙‖
 

Where the brackets denote the Frobenius norm for the matrices inside them, ‖𝐴‖𝐹 = √𝑇𝑟(𝐴𝐴𝐻)  (13) 

where AH is the conjugate transpose of A. 

The calculated deviation is a good measure of accuracy for the error propagation methods that we explore 

here. The figure below presents the deviation of the first order and second order approximations for 

different values of error, ε. 

 

Figure 3: %Deviation of First and Second Order Error  

Approximation vs Joint Angle Error in Radians 

This figure reveals that both approximation methods feature less than 5% deviation for about 0.35 radians 

of ε deviation in each of the joint angles, and that the second order method remains below 5% deviation 

for up to more than 0.5 radians of error. These results are in accordance with the results in [1], and by 

extending the range of error to more than 0.6 radians they provide a more comprehensive picture of how 

the exponential increase in deviation behaves at such large amounts of error. 

Since even 0.35 radians is an unreasonably large amount of error for a decently manufactured robot’s 

joints, both methods are quite viable for practical error propagation applications in the context of the UR5 

(12) 
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and beyond. However, the deviation of the second order method stays almost negligible up until very 

large joint angle errors, and grows much more slowly compared to the first order approximation, making 

it the definite choice for applications where exactness and very high accuracy are needed. 

Conclusion  

In this project a Mathematica Script was developed to implement the forward kinematics and error 

propagation for a UR5 robotic manipulator. The Denavit-Hartenberg method was used to represent and 

calculate the forward kinematics for each individual link and the end effector of the UR5. The first and 

second order error propagation formulas were both implemented and then compared to the actual error 

through the covariance matrix of the set of reference frames constituting the error distribution sample 

calculated by each method. Both propagation formulae provide accurate approximations for small 

amounts of error, about until 0.35 radians, and although afterwards the deviation from actual error rises 

exponentially for both methods, this rise is much slower for the second order method which remains very 

accurate up until about 0.5 radians of error. Overall, the second order method is a significant 

improvement over the first order method in terms of accuracy and robustness for any error, especially for 

larger errors. It successfully propagates error through the UR5 serial manipulator. 
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