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Abstract—A method to digitize lecture notes written on
blackboards is proposed to allow students to more efficiently
organize and learn from class material. Texts are segmented from
the processed image and fed into an open source deep-learning
model to recognize handwritten words. Graphs are segmented by
locating the axes using the Hough Transform. The preprocessing
stage works well in transforming the blackboard image and
removing unwanted noise through the use of an Otsu threshold.
The handwritten character recognition works well when lines
are parallel and words are well separated, but fails when texts
intersect each other. Plot segmentation also yields good results,
but parameters still need to be optimized for each image in its
current state. Future work can be done to combine modules using
Deep Learning to automate the process and to improve efficiency.

Index Terms—Handwritten character recognition, Otsu
thresholding, Edge filter, Hough transform

I. BACKGROUND

Many students find it hard to take complete notes and
pay attention in class, especially if the instructor is going
fast. This motivated us to develop software to capture the
instructor’s inscription and drawings, as well as isolating the
graphs. In short, our objective is to digitize lecture notes
by automatically recognizing handwritten text and plots, then
outputting them as digital text and figures.

II. PROPOSED METHOD
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Fig. 1. Pipeline of proposed method with three modules

Figure 1 shows the three modules of our proposed
method with their respective stages. A picture of the black-
board is fed as input to the preprocessing module which then
outputs a transformed, binarized image. The HTR module
performs a series of segmentation on the text on the binarized
image until each word is separated and fed into a deep learning
model pre-trained on the IAM dataset. The Plot Segmentation
module uses a Probabilistic Hough Transform on the image to
obtain axes and segment a graph to make it a separate element.

III. PREPROCESSING

A. Perspective Transform

During a lecture students may not have the luxury
to wait after class and capture a well-positioned photo, and

instead may have to take a photo from their seats at a skewed
angle. The preprocessing stage takes care of this problem by
applying perspective transformation [1]. To do so the user
defines the corners of the area of interest, which are then
ordered using the locations of the corner pixels. Then, the
size of the new image array is calculated as the greatest
horizontal and vertical distances between any two corners. The
transformation matrix between the original and transformed
images is then calculated with an OpenCV method, and is
used to transform the original image into the new, rectangular
one that looks more like lecture notes.

Fig. 2. Before and after picture of perspective transformation on an image
of a blackboard

B. Smoothing and Thresholding

After reusing and erasing boards many times, the black-
board surface is no longer clean, and has has less contrast with
what’s written on it. To alleviate this, the image goes through
thresholding to separate the background from the foreground
pixels. Multiple thresholding methods such as global and
adaptive thresholding were experimented with [2]. However, in
the end Otsu Thresholding is used, so that the threshold value
is not fixed but is adapted to each individual image, resulting
in a smoother distinction between foreground characters and
graphs and the background. Before implementing the thresh-
old, a Gaussian Blur is applied to smooth and denoise the
image.
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Fig. 3. Comparison of various thresholdig methods. Left: Adaptive, Middle:
Global Binary, Right: Otsu



IV. HANDWRITTEN TEXT RECOGNITION

As shown in Figure 1, the HTR problem can be treated
in three steps: line segmentation, word segmentation and
character recognition.

A. Line Segmentation

Line segmentation of handwritten characters differs
from that of printed ones in that handwritten text are sel-
dom parallel and characters from different rows can often
intersect each other. To solve this problem, our software uses
an implementation that can associate components with the
correct row by modeling the lines as bi-variate Gaussian
densities and looking at the probability of the component under
each Gaussian or the probability obtained from a distance
metric. The paper from which the implementation is based on
demonstrated an accuracy of 98.81% on over 200 handwritten
images [3], [4]. Note that Line 1 in Fig. 4 incorrectly segments
the word “of” due to line 3 intersecting line 4 and not being
completely parallel with it.
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Fig. 4. Line segmentation of the text block

B. Word Segmentation

After the lines are segmented, they are fed into a
word segmentation algorithm to produce individual words.
The implementation is based on a scale-space blob technique
which outlines the method of filtering an image to create blobs
corresponding to each word and segmenting them using an
connected component algorithm [4]. Figure 5 demonstrates
the algorithms effectiveness at segmenting words. Note that
the algorithm fails to segment “to axia” due to insufficient
white space between the words.
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Fig. 5. Word segmentation and recognition performed on Line 2 in Fig 5.

C. Word Recognition

The segmented words are fed into a deep learning
model pre-trained on the IAM dataset using Tensorflow con-
sisting of 5 CNN layers, 2 RNN layers and a CTC decoder
layer [5]. The implementation provided was able to achieve
68% accuracy on the IAM dataset [5]. Notice in Figure 5 that
the model fails to recognize the last two words, partly due to
faulty segmentation.

V. PLOT SEGMENTATION

After preprocessing, the working image passes through
the Plot Segmentation module to isolate it. The image is
first passed through vertical and horizontal Sobel filters inde-
pendently, in order to improve axes detection. These filtered
images then pass through a Probabilistic Hough Transform
(P-HT) model built-in to the OpenCV library. In the current
implementation, parameters such as the threshold and the
minimum line length need to be manually optimized for each
image. Next, the vertical and horizontal lines generated by
the P-HT are checked for preliminary intersection with one
another. Constraints are imposed on the preliminary elements
to obtain the final set of intersections. Some examples of these
constraints are minimum allowable distance from the edges
of the image and allowable proximity of intersections to one
another. Finally, the final set of intersections is used to mark
one of the corners of the segmentation window. In the current
implementation, the size of this window needs to be manually
optimized for each example to obtain the best result.
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Fig. 6. An example of good plot segmentation (right) with but a non-plot
element (left) segmented as well.

VI. CONCLUSION

Our software can accurately recognize text when the
inter-word distance is large and text lines are parallel. Plot
segmentation works well but requires manual optimization
of parameters to yield the best result. Improvements could
be made to more accurately segment diagrams and texts,
and do so automatically, using a neural network instead of
standard image processing techniques for better results. To
improve user experience improvements and features can be
implemented. For example, a GUI that allows users to organize
texts and diagrams as they desire, automatic equation and
simple function-in-plot recognition.
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